Optimization of the Catalytic Asymmetric Addition of Nitroalkanes to Cyclic Enones with *trans*-4,5-Methano-L-proline

LETTERS 2006 Vol. 8, No. 21 4787–4790

ORGANIC

Stephen Hanessian,* Zhihui Shao, and Jayakumar S. Warrier

Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada

stephen.hanessian@umontreal.ca

Received July 25, 2006

ABSTRACT

The conjugate addition of symmetrical 2-nitroalkanes to 2-cycloalkenones catalyzed by *trans*-4,5-methano-L-proline proceeds with >99% ee and excellent chemical yields. 1-Nitroalkanes afford diastereomeric *syn/anti* products that can be separated with good individual enantioselectivities. Proline hydroxamic acid and its *trans*-4,5-methano -L-proline hydroxamic acid are also effective organocatalysts in the addition of 2-nitropropane to 2-cyclohexenone (75% and 81% ee, respectively).

The base-catalyzed addition of nitroalkanes to cyclic enones is a fundamentally important preparative route to β -substituted cycloalkanones.¹ Formally grouped under Michael addition reactions, the resulting nitroalkyl appendages in these compounds can be chemically transformed into a variety of functionally useful compounds, which can also benefit from the rich chemistry of the resident carbonyl group.²

The first example of a preparatively useful metal-free catalytic asymmetric addition of 2-nitropropane to 2-cyclohexenone was achieved in the presence of rubidium Lprolinate by Yamaguchi and co-workers in 1994.³ Thus, 3-(2nitropropan-2-yl)cyclohexanone and the corresponding cycloheptanone were obtained in 59% and 79% ee, respectively. Enantioselectivities were substantially lower with nitromethane and 2-cyclohexenone (45% ee).

Subsequent studies in our laboratory revealed that the use of $3-7 \mod \%$ equiv of L-proline (1) in the presence of achiral *trans*-2,5-dimethylpiperazine as an additive led to the *3R*-nitroalkyl cyclohexanone adduct in 93% ee with 2-nitropropane, 1-nitrocyclopentane, and 1-nitrocyclohexane as nucleophiles.⁴ Contrary to the case of Rb prolinate, this reaction exhibited a very unusual nonlinear effect,⁵ especially with *trans*-2,5-dimethylpiperazine as the additive,^{4,6} Since then, the catalytic asymmetric Michael addition of 2-nitropropane to 2-cyclohexenone has been reported in the

⁽¹⁾ For pertinent reviews and monographs, see: (a) Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.; Petrini, M. *Chem. Rev.* **2005**, *105*, 933. (b) Leonard J. *Contemp. Org. Synth.* **1994**, *1*, 387. (c) Perlmutter, P. *Conjugate Additions Reactions in Organic Synthesis*; Pergamon: Oxford, UK, 1992.

⁽²⁾ For reviews, see: (a) Ono, N. *The Nitro Group in Organic Synthesis*; Wiley-VCH: New York, 2001; Chapter 3, p 30. (b) Luzzio, F. A. *Tetrahedron* **2001**, *57*, 915. (c) Ballini, R.; Petrini, M. *Tetrahedron* **2004**, *60*, 1017.

^{(3) (}a) Yamaguchi, M.; Igarashi, Y.; Reddy, R. S.; Shiraishi, T.; Hirama, M. *Tetrahedron* **1997**, *53*, 11223. (b) Yamaguchi, M.; Shiraishi, T.; Igarashi, Y.; Hirama, M. *Tetrahedron Lett.* **1994**, *35*, 8233

⁽⁴⁾ Hanessian, S.; Pham, V. Org. Lett. **2000**, *2*, 2975.

⁽⁵⁾ For a review, see: Girard, C.; Kagan, H. Angew. Chem., Int. Ed. Engl. 1998, 37, 2923

⁽⁶⁾ For a review on additives and cocatalysts in asymmetric reactions, see: Vogel, E. M.; Gröger, H.; Shibasaki, M. Angew. Chem., Int. Ed. Engl. **1999**, *38*, 1570.

presence of a peptide catalyst and *trans*-2,5-dimethylpiperazine as additive (80% yield, 77% ee).⁷ Using an optimized *N*-spiro C_2 -symmetrical chiral quaternary ammonium bromide catalyst, Maruoka and co-workers⁸ reported the conjugate addition of various 1-nitroalkanes with good to excellent *syn/anti* selectivities and 82–93% ee for the *syn*isomers depending on the enone and the nature of the nucleophile. The *anti*-diastereomers, usually obtained as minor components, exhibited poor to modest enantioselectivities (37–57% ee for 1-nitropropane). The rationale for the selectivity was attributed to transition-state models favoring *syn*-addition of a *N*-spiro ammonium alkyl nitronate salt to 2-cyclohexenone.⁹

In a recent paper we showed that the high stereodifferentiation in the catalytic asymmetric addition of 2-nitropropane to 2-cyclohexenone in the presence of 5-10 mol %L-proline was not subject to variations in the chirality of the added 2,5-dialkylpiperazine.¹⁰ We also reported the first use of L-proline hydroxamic **4**¹¹ as an effective catalyst to achieve 75% ee of adduct.

Herein we report on the use of trans-4,5-methano-L-proline 2^{12} as an optimized, metal-free organocatalyst¹³ for the asymmetric conjugate addition of symmetrical and nonsymmetrical nitroalkanes to 2-cycloalkenones (reaction scheme in Table 1). The results of reactions catalyzed by L-proline (1), trans-4,5-methano-L-proline (2), and cis-4,5-methano-L-proline (3) for 2-nitropropane, 1-nitrocyclopentane, and 1-nitrocyclohexane with 2-cyclopentenone, 2-cyclohexenone, and 2-cycloheptenone, respectively, reveal a preference for higher enantioselectivities when using the *trans*-isomer 2 as a catalyst in all cases. Thus, with 2-cyclohexenone and 2-cycloheptenone, only the 3R-adduct is formed with 2 (Table 1, entries 2, 22, 25, and 28). Unprecedented enantioselectivity is shown in the case of 2-cyclopentenone at 80-87% ee with 2-nitropropane, 1-nitrocyclopentane, and 1-nitrocyclohexane (Table 1, entries 13, 16, and 19, respectively). It should be noted that none of the previous reports^{3,7,8} include 2-cyclopentenone as a substrate. Using Yamaguchi's Rb prolinate as a catalyst for the addition of 2-nitropropane to 2-cyclopentenone gave the adduct with 12% ee.

With *trans*-4,5-methano-L-proline hydroxamic acid **5** as a catalyst, the addition product of 2-nitropropane to 2-cy-clohexenone showed an ee of 81% compared to 75% with

(7) (a) Tsogoeva, S. B.; Jagtap, S. B.; Ardemasove, Z. A.; Kalikhevich, V. *Eur. J. Org. Chem.* **2004**, 4014. (b) Tsogorva, S. B.; Jagtap, S. B. *Synlett* **2004**, 2624.

Table 1. Catalytic Enantioselective Addition of Nitroalkanes to Cyclic α,β -Unsaturated Ketones Catalyzed by Proline (1) and Proline Analogues (2–5)

$\langle \mathcal{X}_{\mathcal{H}} \rangle$	°O₂H		2H K NC	$O_2H \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	солнон	CONHOP
1	2		3	4	5	
entry	n	(R)	catalyst	time (h)	yield ^a (%)	$\mathrm{ee}^{b}\left(\% ight)$
1	1	CH_3	1	72	83	89^{c}
2			2	140	92	99
3			3	146	52	75
4			4	162	78	75
5			5	216	65	81
6	1	$(CH_2)_4$	1	72	79	90
7			2	141	93	99
8			3	149	50	76
9	1	$(CH_2)_5$	1	78	83	92
10			2	140	91	99
11			3	157	40	74
12	0	CH_3	1	71	72	69
13			2	96	87	80
14			3	146	40	66
15	0	$(CH_2)_4$	1	72	74	76
16			2	98	90	87
17			3	144	47	73
18	0	$(CH_2)_5$	1	71	59	77
19			2	96	84	83
20			3	144	23	76
21	2	CH_3	1	80	60	84
22			2	144	57	99
23			3	144	15	60
24	2	$(CH_2)_4$	1	76	65	86
25			2	144	56	99
26			3	144	22	59
27	2	$(CH_2)_5$	1	84	49	85
28			2	144	50	99
29			3	144	8	61

^{*a*} Isolated yield. ^{*b*} By ¹³C NMR analysis of the corresponding ketal with (2R,3R)-2,3-butanediol (average of three runs). See the Supporting Information. ^{*c*} ee values of 89–92% were obtained on average of three runs.

L-proline hydroxamic acid 4^{10} (Table 1, entry 5). Extension of the addition reactions to nitromethane and 2-cyclohexenone or 2-cyclopentenone under the same conditions gave the corresponding 3*R*-nitromethyl adducts as major isomers (74% and 61% ee, respectively) (Table 2, entries 2 and 6). The highest reported ee for 2-cyclohexenone and nitromethane was 58% ee in the presence of a peptide catalyst and *trans*-2,5-dimethylpiperazine as an additive.⁷ In the case of 1-nitropent-4-ene, the diastereomeric addition products with catalyst **2** (Table 2, entry 4) were separable by column chromatography. The less polar compound corresponds to the *anti*-(*R*,*R*) diastereomer (87% ee) while the more polar compound corresponds to the *syn*-(*R*,*S*)-isomer (77% ee). A notable difference in comparison with Maruoka's results is

⁽⁸⁾ Ooi, T.; Takada, S.; Fujioka, S.; Maruoka, K. Org. Lett. 2005, 7, 5143.

⁽⁹⁾ For the use of chiral quaternary ammonium salts and related reagents as catalysts in Michael additions of nitroalkanes to acyclic α,β -enones, see: (a) Corey; E. J.; Zhang, F.-Y. Org. Lett. **2000**, 2, 4257. (b) Kim, D. Y.; Hu, S. C. Tetrahedron **2001**, 57, 8933. (c) Halland, N.; Hazell, R. G.; Jørgensen, K.-A. J. Org. Chem. **2002**, 67, 8331. (d) Itoh, K.; Kanemasa, S. J. Am. Chem. Soc. **2002**, 124, 13394. (e) Nakulya, B.; Varges, B.; Csámpai, A.; Soós, T. Org. Lett. **2005**, 7, 1967 and references therein.

⁽¹⁰⁾ Hanessian, S.; Govindan, S.; Warrier, J. S. *Chirality* **2005**, *7*, 5143.

⁽¹¹⁾ Pirrung, M. C.; Chan, J. H. L. J. Org. Chem. 1995, 60, 8084.

⁽¹²⁾ Hanessian, S.; Reinhold, U.; Gentile, G. Angew. Chem., Int. Ed. 1997, 36, 1881.

⁽¹³⁾ For reviews on asymmetric organocatalysis, see: (a) Berkessel, A.; Gröger, H. In *Metal-Free Organic Catalyst in Asymmetric Synthesis*; Wiley-VCH: Weinheim, Germany, 2004. (b) Dalko, P. I.; Moisan, L. *Angew. Chem.*, *Int. Ed.* **2004**, *43*, 5138.

Table 2. Diastereoselective Addition of 1-Nitroalkanes to Cyclic α , β -Unsaturated Ketones Catalyzed by **1** and **2**

		reaction								
entry	n	2 (R)	catalyst	time (h)	yield ^a (%)	ee (%)				
1	1	Н	1	72	69	71				
2	1	Н	2	142	80	74				
3	1	$CH_2CH(CH_2)_2$	1	86	$77 (2:3)^b$	84^c				
						70^d				
4	1	$CH_2CH(CH_2)_2 \\$	2	144	$94 (2:3)^b$	87				
						77^d				
5	0	Н	1	71	40	57				
6	0	Н	2	143	50	61				
7	0	$CH_2CH(CH_2)_2 \\$	1	82	84	70^{c}				
						50^d				
8	0	$CH_2CH(CH_2)_2 \\$	2	144	91	76 ^c				
						60^d				
9	1	$\rm CH_3 CH_2$	1	72	$80(1:2)^{b}$	85^c				
						72^d				
10	1	$\rm CH_3 CH_2$	2	144	89 (1:2) ^b	91 ^c				
						74^{d}				

^{*a*} Isolated yield. ^{*b*} Diastereomeric ratio. ^{*c*} Less polar isomer (*anti-R,R*-isomer). ^{*d*} More polar isomer (*syn-R,S*-isomer).

the relatively high ee of the *anti*-diastereomer in the addition to 2-cyclohexenone catalyzed by **2**. In the case of 2-cyclopentenone (Table 2, entry 8), the ratios were 76% and 60% ee for *anti*- and *syn*-isomers, respectively. Although enantioselectivies of individual products are still modest, these are the first examples of additions of unsymmetrical 1-nitroalkanes to cyclopentenone. Compared to Maruoka's results with 1-nitropropane and 2-cyclohexenone (*syn*-major, 91% ee; *anti*-minor 57% ee), catalysis with **2** gave *anti/syn* enantioselectivities of 91% and 74% ee, respectively, and a 1:2 diastereomeric ratio of separable 3-nitropropyl adducts (Table 2, entry 10). The preponderance of higher enantioselectivity for *anti*-isomers in all cases is also noteworthy.

A plausible catalytic cycle representing the prototypical addition of 2-nitropropane to 2-cyclohexenone in the presence of **2** as a catalyst is shown in Figure 1. Thus, iminium carboxylate intermediate **A** undergoes face selective addition of the piperazinium nitronate anion in an *anti*-trajectory relative to the carboxylate group, to give the enamine adduct **B**. The cycle continues with the formation of a second iminium carboxylate **C**, which leads to the hemiaminal **D**. Release of the amino acid into the medium together with the adduct allows for the catalytic cycle to continue. An analogous mechanism can be suggested for **1** and **3** resulting in products having 89-92% ee and 75% ee, respectively. The reaction time with L-proline is roughly half compared to that of **2** and **3**. There is considerable unreacted material

Figure 1. Possible catalytic cycle for *trans*-4,5-methano-L-proline, 2-cyclohexenone, and 2-nitropropane.

left in the case of the *cis*-isomer **3**. No reaction was observed with L-proline alone, and only trace amounts of racemic product were seen in the presence of the piperazine without L-proline as controls.

It is not immediately obvious why catalyst **2** should surpass **1** and its *cis*-isomer counterpart **3** in its ability to significantly bias the enantioselectivities of the conjugate addition reactions products. A priori, based on steric arguments, the results are counterintuitive, since the *pro-R* face of the 2-cyclohexenone should be more accessible to attack by the 2-nitropropane anion with its associated bulky base in the case of the *cis*-isomer **3**. In comparison to L-proline (**1**) as a catalyst, there must be an intrinsic bias in favor of **2** that leads to the exclusive formation of the enantiopure *R*-adduct with symmetrical 1-nitroalkanes and 2-nitrocycloalkanes.

The solid-state crystal structure of **3** reveals a boatlike conformation with the carboxylate out-of-plane (Figure 2).¹⁴ Torsional effects involving the cyclopropane ring in **3** will favor a boat conformation.^{15,16} However, a pseudoaxial carboxyl¹⁷ group that is normally favored due to minimization of $A^{1,3}$ strain¹⁸ (as in **Ia** compared to **Ib**, Figure 2) will not be favored due to a steric interaction with the cyclopropane ring. The combination of these two effects may account for

⁽¹⁴⁾ See the Supporting Information.

⁽¹⁵⁾ Cheong, P. H.-Y.; Houk, K. N.; Warrier, J. S.; Hanessian, S. Adv. Catal. 2004, 346, 1111.

^{(16) (}a) Kang, P.; Choo, J.; Jeong, M.; Kwou, Y. J. Med. Struct. 2000, 519, 75. (b) Mastryukov, V. S.; Osina, E. L.; Vilkov, L. V.; Hildebrandt, R. L. J. Am. Chem. Soc. 1977, 99, 6855. (c) Cook, R. L.; Malloy, T. B., Jr. J. Am. Chem. Soc. 1974, 96, 1703. (d) Grostic, M. F.; Duchamp, D. J.; Chidester, C. G. J. Org. Chem. 1971, 36, 2929.

Figure 2. (Top) X-ray structure of 3; (Bottom) Torsional (Ia) and $A^{1,3}$ strain (Ib) effects in iminium ion derived from 3.

the sluggish progress of the reaction and the lower enantioselectivity in the case of **3**. We have previously shown that in the solid state, *N*-Boc-4,5-*trans*-methano-L-proline is considerably flatter compared to the *cis*-isomer (rms 0.003 and 0.013 Å, respectively).^{12,19} It is therefore possible that formation of the iminium ion **A** from **2** (Figure 1) requires less geometrical reorganization compared to **3** (Ia, Figure 2).²⁰

In conclusion, we have shown that trans-4,5-methano-Lproline 2 is an optimal catalyst for the asymmetric conjugate

(18) Hoffmann, R. W. Chem. Rev. 1989, 89, 1841.

(19) The cyclopropane C-C bonds toward its apex extending from C-4 and C-5 are significantly longer in N-Boc 2 compared to N-Boc 3, indicating a relatively less rigid ring (ref 12).

addition of symmetrical 2-nitroalkanes to 2-cycloalkenones. Hitherto unreported additions to 2-cyclopentenone afford products with enantioselectivities surpassing 80% ee. While the ratios of the two *syn-* and *anti-*isomers in the case of 1-nitroalkanes are low, the products can be easily separated, and each exhibits good enantioenrichment favoring the *anti-*isomer, contrary to when quaternary bases are used.⁸ These results are of interest, since efforts to extend such conjugate additions of nitroalkanes to ring-substituted analogues of proline have not been successful in the past.^{3,21}

In addition to their recent versatile applications as proline analogues in prototypical enzyme inhibitors,^{22–24} 4,5-methanoprolines are also useful organocatalysts that can surpass the venerable proline in conjugate additions of nitroalkanes to cyclic enones in many cases. *Trans*-4,5-methano-L-proline hydroxamic acid **5** is also an effective catalyst albeit with modest enantioselectivity in a model reaction.

Acknowledgment. We thank NSERC for generous financial assistance.

Supporting Information Available: Representative experimental procedures, ¹³C NMR spectra, and X-ray data of compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0618407

(23) Hanessian, S.; Reinhold, U.; Saulnier, M.; Claridge, S. Bioorg. Med. Chem. Lett. 1998, 8, 2123.

⁽¹⁷⁾ See for example: (a) Overman, L. E.; LeSuisse, D.; Hashimoto M. J. Am. Chem. Soc. 1983, 105, 5373. (b) Brown, J. D.; Foley, M.; Comins, D. L. J. Am. Chem. Soc. 1988, 110, 7445. (c) Beak, P.; Zajdel, W. J. Am. Chem. Soc. 1984, 106, 1010. (d) Hart, D. J. J. Am. Chem. Soc. 1980, 102, 397. See also: (e) Hanessian, S.; Tremblay, M.; Marzi, M.; Del Valle, J. J. Org. Chem. 2005, 70, 5070 and references therein.

⁽²⁰⁾ The iminium ion **A** may also benefit from a through space interaction with the electron-rich cyclopropane ring.

⁽²¹⁾ For the use of a pyrrolidine 3-carboxylic acid derivative as a catalyst in Mannich reactions, see: Mitsumori, S.; Zhang, H.; Cheong, P. H. T.; Houk, K. N.; Tanaka, F.; Barbas, C. F., III J. Am. Chem. Soc. **2006**, 128, 1040.

⁽²²⁾ Magnin, D. R.; Robl, J. A.; Sulsky, R. B.; Augeri, D. J.; Huang, Y.; Simpkins, L. M.; Taunk, P. C.; Betebener, D. A.; Robertson, J. G.; Abbao-Offei, B. E.; Wang, A.; Cap, M.; Xin, L.; Tao, L.; Sitkoff, D. F.; Malley, M. F.; Gougoutas, J. Z.; Khanna, A.; Huang, Q.; Han, S.-P.; Parker, R. A.; Haman, L. G. J. Med. Chem. 2004, 47, 2583.

⁽²⁴⁾ Reichelt, A.; Martin, S. F. Acc. Chem. Res. 2006, 39, 433.